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for lossy dielectric substrates, the theory developed in this paper

has better accuracy and is clearly preferred,

In the results obtained for the microstrip and the coupled

microstrip, the lowest order of accuracy, “zero order”, was con-

sidered for the solutions. Nevertheless, it is not too difficult to

achieve a higher degree of accuracy by increasing the order of the

final matrix. This can be accomplished by simply expanding the

currents or the fields in terms of appropriate basis functions like

those, for instance, in [1].

The computer programs developed to generate the quoted

results are in FORTRAN and are available by request.
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Mathematical Representation of Microwave oscillator

Characteristics by Use of the Rieke Diagram

KATSUMI FUKUMOTO, MASAMITSU NAKAJIMA, MEMBER,

IEEE, AND JUN-ICHI IKENOUE

Abstract —This paper shows that the characteristics of oscillators can be

phenomenologically expressed by a polynomial function of freqnency aud

amplitude, provided the output signaf is nearly sinusoidal, especially at
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microwave frequency. A method is presented of determining the coeffi-

cients of the polynomial from several points on the Rieke diagram, with

two examples being shown. The characteristics of oscillators can conse-

quently be represented by several parameters, as in tbe case of electron

tubes and transistors, so that the design of an oscillator circuit may become

easier with the aid of an electronic computer.

1, INTRODUCTION

So far, extensive studies have been performed on oscillator

characterization. An important contribution was made by van der

Pol. Since then, almost all studies on oscillators have been based

on his oscillator model. It appears, however, that few have

investigated the oscillator model itself.

The purpose of this paper is to provide a new mathematical

oscillator model. It will be shown that the nonlinear admittance

of oscillators can be phenomenologically expressed by a poly-

nomial function of frequency and amplitude, provided the output

signal is nearly sinusoidal, especially at microwave frequency. A

method is presented concerning how to determine the coefficients

of the polynomial from severaf points on the Rieke diagram, and

two examples will be shown. Although much time is consumed to

draw diagrams, the Rieke diagram has so far been used to express

the characteristics, especially of microwave oscillators [1], [2].

This is because the Rieke diagram has advantages since the

equi-power and equi-frequency loci are geometrically plotted on

the Smith chart, and since the load admittance is represented

within a circle of finite extent.

In this paper, a mathematical expression of oscillator cha-

actenstics is proposed instead of the geometrical expression, so

that tlhe characteristics of oscillators may be represented by

several parameters, as in the case of electron tubes and transis-

tors. The design of oscillator circuits will then become easier with

the aicl of an electronic computer.

H. MATHEMATICAL EXPRESSION OF NONLI~AR

ADMITTANCES

A. Van der Pol’s Oscillator

Van der Pol gave a basic mathematical expression of oscillator

characteristics allowing for nonlinearity. If his formulation is

viewed from the standpoint of the fundamental oscillation

frequency, the oscillator admittance can be represented by a

function of frequency and voltage amplitude squared as [3]

Y(J0,1V12) = –GO+GI,IV12+ jB@Aw (1)

where AQ = o – QO, and WO is the center frequency. 1 As is ex-

plained in the next section, the Rieke diagram of (1) is repre-

sented in the form of Fig. 2(b), while that of an existing oscillator

is of Fig. 9. These two Rieke diagrams are different from each

other chiefly in the following ways: i) Load locus on which

maximum output power is generated is a circle in the case of van

der Pol’s oscillator, while an existing oscillator produces the

maximum power at a single point on the Rieke diagram. ii) The

Rieke diagram of van der Pol’s oscillator is symmetric, while that

of an existing oscillator is usually asymmetric.

B. Generalization of Oscillator Admittance

Fig. 1 shows an equivalent circuit of coupling of a microwave

oscillator to a load. The effect of coupling strength of the

I The osculation frequency when a matched load is connected to the line.
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Fig. 1. Equivalent circuit of coupfing of a microwave oscillator to a load,

oscillator to the transmission line is represented by an ideal

transformer (1: n), so that we have

Y’(ju,lvl*) =r(jo,lvl*)/n*. (2)

This oscillator admittance is transformed by a line length

Y(j@,lvl’) =~[Y’(ju, [vi’)]. (3)

The transformation 5? means the counter-clockwise rotation of

equi-power and equi-frequency loci on the Rieke diagram. Here

we assume that the resultant admittance Y( jti, IVI 2) is given by a

polynomial function of frequency and voltage as given by

Y(jU,lV12) =–GO+jBO +( G@+jB@)ACtr

+( Gv+jBv)lV12 +( Gc+jBc)AOlP’12

+ (G02 + jB@2)AQ2. (4)

This is an extension of (l). Before we demonstrate that this model

represents the characteristics of practical oscillators fairly well,

we will investigate briefly the meaning of the coefficients of the

variables AO and lV12.

In general, the first-order terms in IVI may be included in the

above equation. But, if they are included in addition to the

second-order terms in IVl, the algebra is much more complicated;

the load admittance that produces the maximum power cannot be

expressed in closed form, as will be clear in the following.’ For

IMPATT diodes, however, the replacement of IVI for IVI 2 may

give better results. In this case, the mathematics are not altered in

substance.

Now, let the load admittance be Y~ = G= + jBL. By applying

Kirchhoff’s second law, we have

Y(ju, y12)+YL=o. (5)

The output power is given by

P=G~lV12 (6)

so that we have

Y(ju, P/G~)i-Y~=O. (7)

Normalizing (7) to the characteristic admittance YO of the line

gives the following equation:

Y( jw, P/GL)/YO + Y./YO = ~( ju, P/G~)-t-?~ = O (8)

where the symbol - denotes the normalization to YO. Plots of (8)

on a Smith admittance chart, with co or P kept constant, give the

equi-frequency or equi-power loci on the Rieke diagram

C. Stability Criterion

In this section, we consider the stability of solutions for (5).

Assuming a small change 8 IVI from the stationary voltage ampli-

A
IBL

A’

/
/
/
/

/
A F /

-— ---- —. ---- . .
/
/

/
/

0 , tL

/ ~

Y,
/

6
/

/ /
/ /
/ /
/

/
/
h

(a)

m.o

(b)

Fig. 2. van der Po1’s oscillator. (a) Complex load plane. (b) Rieke diagram.

tude 1V, 1at frequency ti~, we have a variational equation

1 d81Vl

{

_Re Tvl(Ajl K12)—— .
81VI dt

)TU(A, IK12) “
(9)

We see that 1~1 is stable only when the right-hand side of (9) is

negative [3], [4].

D. iWeaning of Each Coefficient

We consider first the characteristics of van der Pol’s oscillator

as a basis. Maximum output power of van der Pol’s oscillator is

given by Pm = G~/4G” (Appendix I). Let power P be normalized

to Pm

P = P/Pm= 4GvP/G; . (lo)

Fig. 2(a) shows the equi-frequency and equi-power loci of van der

Pol’s oscillator on the complex load plane, and Fig. 2(b) repre-

sents those on the Smith chart. From the real part of (8), together

with (10), the equi-power loci of van der Pol’s oscillator may be

written as (Appendix I)

6L = GO(l+H)/2Y0. (11)

From (11), it is found that the maximum output p~wer P =1 is

generated at every point on the admittance locus of G~ = GO/2Y0.

Equation (12) represents the equi-frequency locus

B~ = – BuAu/YO (12)

with the central frequency line Au = O, corresponding to the

susceptance B~ = O line. It should be noted that the stability

condition G”, B.> O holds by applying (9).

1) ikleaning of Coefficients Gu and B ~: First of all, let us

investigate the characteristics of an oscillator model containing

two parameters GO and B” in addition to van der Pol’s oscillator

model in (l). The equi-power and eqni-frequency loci are respec-
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Fig. 3. Rieke diagram containing Cm and B,,. (a) Complex load plane (b)

Rieke diagram (case of Bu <0, G. > O).

tively given by (see Fig. 3)

( BVGU
–GO+ GV–7

)
PG;/4G &LYO

u

+ &LYo – GuBLYo/Bu = O (13)

~~YO + BtiAu + (G. – G@Au – &YO)Bv/Gv = O. (14)

The coefficient GU makes the equi-power loci asymmetric with

respect to frequency. The equi-frequency loci have a tendency to

turn to the left toward the periphery when B ~ is positive, and to

the right when B ~ is negative. The stability condition is obtained

from (9)

GVBW– BVGW> O. (15)

2) A4eamng of Coefficient Gc: Fig. 4 shows the Rieke diagram

of an oscillator model containing a parameter Gc in addition to

van der Pol’s model (1). The equi-power loci are given by

(6LYO)2-GOCLYO+ ki{Gv - GcyoBL/B.}/4Gv = 0.

(16)

The equi-frequency loci are given by (12). The stability condition

is given by

Gv – GcYOBL/Bu >0. (17)

3) Tleaning of Coefficient Bc: Fig. 5 shows the Rieke diagram

containing Bc in addition to van der Pol’s model (l). The

equi-power loci are given by (11), and equi-frequency loci are

obtained from

Y@L+ALJ{Bti+ (Go- YoCL)Bc/Gv} =0. (18)

The stability condition is expressed by
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Fig. 4. Rieke d,agram containing Cc (a) Complex load plane. (b) Weke

diagram (case of Cc > O).

(a)

AW. o ac

(b)

Fig. 5. Rieke diagram containing B=. (a) Complex load plane (b) Rieke

diagram (case of B, > O).

4) itfeaning of Coefficient GU2: Fig. 6 shows the Ilieke diagram

containing GU2 in addition to van der Pol’s oscillator. The maxi-

mum output power is generated at only one point. The practical

oscillators have positive Gti *. The equi-power loci are represented

by

BWGV+ Bc(GO– YO&) >0. (19) ~G~/4+ (~zYO)2– &.YO{ GO– Gtiz (~LYo/B@)2} = O. (2o)
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plane. (b) Rieke

The equi-frequency loci are given by (12). The stability condition

is GV, BV> O.

5) Meaning of coefficient Btij: Fig. 7 shows the Rieke diagram

containing Bwz in addition to van der Pol’s model (l). The

equi-power loci are given by (12). The equi-frequency loci are

represented by

~~YO = – (1 + Bti2AQ/Bti)At.@0. (21)

The stability condition is

BU+2BU2AU>0. (22)

III. METHOD TO DETERMINE H CHARACTERISTIC PARAMETI?RS

OF AN OSCILLATOR BY USE OF THE RfEfCE DIAGRAM

Let us consider how to determine the coefficients of Au and

IVI 2 in (4) by use of the Rieke diagram. The line length shown in

Fig. 1 rotates the Rieke diagram. After we rotate it to get the

standardized Rieke diagram, we determine the coefficients of

(4).2

A. !l%e Use of the Least-Square Method

Generally speaking, five complex coefficients of (4) can be

determined by five measured values. If we want to get more

accurate solutions, we can make use of the least-square method.

The residual of (4) from the N measured values

~L,=~L,+jBLi (i=l-N)

is written as

R,= f’(JU,, p,/GL,)+iL, (i=l-N). (23)

From the definition of the least-square method, the coefficients

2 The standard diagram, in the case of vao der Pol’s oscillator, is such that

the center frequency fine ( Ati = O) is equaf to the load line of zero susceptance

and nonoscillation region exists in the heavy-load-admittance region.
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are determined by minimizing S~

S,= ~ {Re(R, )}2+ ~ {Im(R, )}2.
~=1 ic~

(24)

B. Weighted Averaging Method

The Smith chart is not uniform with respect to the density of

admittance. This leads to nonuniform accuracy of the result

according to the feature of the Smith chart. To rectify it, we

adopt a weighting function. Let us assume a weighting function3

w(lrl,o)s 30.5 –29.51rlc0s8 (25)

the distribution of weight of which is shown in Fig. 8. The left

part of the Smith chwt (small admittance region) has heavier

weight than the right part, so that the relative accuracy is aver-

aged on the Smith chart. With the weighting function (25) em-

ployed, (24) is modified as

~w= ~ {Re(R,)}2~+ ~ {Im(Rl)}2~.s (26)
~=1 j=l

3Since there M no definite rule to find the weighting function, (25) has been

assumed in an intuitive and empirical manner.
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Fig. 9. Example of a Gunn oscillator ND079AK. (a) Measured R2eke dia-

granr. (b) Reproduced Rieke diagram.

By solving the partial differential equation, we can obtain the

coefficients of (4) (see Appendix II).

IV. EXAMPLES

By use of the method described above, let us determine the

admittances of practical oscillators. As an example, Fig. 9(a)

shows the Rieke diagram of a Gunn oscillator ND079AK. The

values of the parameters shown in Table I were determined from

16 measured points on the Rieke diagram. Fig. 9(b) shows the

calculated Rieke diagram using the values of this table. Compar-

ing Fig. 9(a) with (b), we see a good agreement between them,

and by far a better agreement than with van der Pol’s model.

Fig. 10 shows another example of a Gum oscillator 10GMO81.

The relation among (a), (b), and Table II is the same as that of

Fig. 9. Figs. 10(a) and (b) show a good overall agreement in

between.

V. CONCLUSION

We attempted to represent the admittance of oscillators in

terms of mathematical formulas, whose parameters are de-

termined from the Rieke diagram. As a result, we found that (4)

is sufficient to represent the characteristics of ordinary micro-

wave oscillators. With this formula applied to computer analysis,

the design of oscillator circuits and the drawing of the Rieke

diagram will be made easier.
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APPENDIX I

EQUI-POWER LOCI OF VAN DER POL’S OSCILLATOR

Equation (1) represents the characteristics of van der Pol’s

oscillator. Comecting a load Y~ to the oscillator leads to (5). The

15

NEC 10 GMO81 X301

F.= 8,848 GHz

(a)

.5 ~8Q”
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2 90”

-15

o“

(b)

Fig. 10. Example of a Gunn oscillator 10GMO81

gram, (b) Reproduced Rieke diagram,

(a) Measured Rieke dia-

TABLE I

COEFFICIENTS FOR FIG. 9(a) +(b)

-3
GO=0,592X162 Bc=-O,991X1O

&-0,861xl G4 !&0,357xvj3

Gv=0,387xlrj6 BV=0.118X166

Gc=O.955 X 168 Bc=-0,890xl~8

&z= 0,882x 155 BWZ= 0.76 f+xl~6

POWER(mw
LFREQ. AW ( HZ)

LINE ACM. 0,002(u)

TABLE II

COEFFICIENTS FOR FIG. 10(a)+(b)

Go= 0.00471 Bo=-O.00240
-&

Gw=-O.549X1O
-3

Bu,=o.147x10

-7
Gv=O.735X1O Bv=0,572xlci7

-8
Gc=O.169X1O Bc=0.187xlii8

%=0.542x166 B~a=0,196XlIj5

LINE ADM. 0.002[U1

FREQ. MHz
POWER mw

real part of (5) is

–Go+GVl~12+GL=0. (Al)

Substuting (10) into (Al), we have

(A2)G: – GOG~ + G:~/4 = O.

The equi-power loci are plotted using (A2). The maximum output

power ~ = 4GvP~/G~ = 1 is generated when ~~ = Go/2Y0.
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APPENDIX II

METHOD TO DETERMINE THE COEFFICIENTS BY USE OF THE

LEAST-SQUARE METHOD

The minimization of (26) is attained by minimizing both the

real and imaginary parts of (26). Setting

g= Im{&W} ~=Re{iYRW}

we have the minimization conditions

af df X=o x=()
r3G0 =0’ 8GU =0’ dGv

,*=O (A3)
‘ dGc ~-

ag .o~.()~=()~=(j. (A4)*o_
r3B0 ‘ dB@ ‘ (?Bv ‘ aBc ‘ aBw2

We find the coefficients of (4) by solving the simultaneous

equations (A3) and (A4).
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single-Mode Fiber Design for Minimum Dispersion

PAULO SERGIO MOTTA PIRES AND

DAVID ANTHONY ROGERS, MEMBER, IEEE

Abstract —The value of the radius of the core of a single-mode step-

index optical fiber for minimtmr dispersion is cafcnlated with the norrual-

ized frequency iu the range 1.0< V <2.5, using the approximation for the

eigenvakte U proposed by Miyagi and Nishida [1]. This calculation is made

by solving the total” dispersion equation for the core radius when the

wavelength assigned is assumed to be that necessary for minimnrtr total

dispersion. The computatiottaf procedure presented is simple enough to be

accomplished on a programmable calculator or microcomputer. Tbis work

makes possible the characterization, with reasonable precision, of tbe ideaf

fiber that should be used with the available optical source.

I. INTRODUCTION

The bandwidth for single-mode optical fibers is maximum

when operation of the system takes place at the wavelength for

minimum total dispersion ~. Theoretical research concerning

dispersion in monomodal step-index opticaf fibers has been based

on the assumed prior knowledge of the core radius and of the

materials that constitute the core and the cladding, so that the

wavelength ~ can be found. Since the wavelength is established

by the characteristics of the known fiber, the next step is to

search for the corresponding optical source.

Manuscript received January 14, 1982; revised June 15.1983. The work of
P. S. M. Pires was partially supported by the Conselbo National dc Dc-

senvohnmento Cientifico e Technologico (CNPq), Brazil.
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D. A. Rogers is with the Department of Electrical aud Electronics Engineer-

ing, North Dakota State University, Fargo, ND 58105.

In previous publications [2], [3], the exact characteristic equa-

tions and numencaf methods for differentiation and interpolation

for calculating the value of ~ for monomodal step-index optical

fibers have been used. The results thus obtained were compared

with those that were arrived at utilizing asymptotic formulas

[4]-[7]. In spite of the excellent results obtained, even in the

asymptotic limit, and having made possible the extension of the

analysis that had been developed to other cases, the large quan-

tity of calculations required the availability of medium to large

computer systems. When such systems are not available, some

approximate methods, with acceptable precision in thpse circum-

stances, allow the implementation of programs to calculate the

value of ~ using programmable calculators or microcomputer

systems.

Utilizing the total dispersion formula established by South [7],

derived with the objective of calculating A, together with the

approximate formulation for the eigenfunction U proposed by

Miyagi and Nishida [1], we prepared some programs for the

TI-59 programmable calculator that make possible the design of

monomodaf step-index opticaf fibers. With the utilization of

these programs, we obtain the value of the radius of the core,

within the normalized frequency range 1.0< V <2.5, for any

value of the wavelength assumed to be that for minimum disper-

sion. In other words, we start with knowledge of the materials

that will constitute the core and the cladding and with the value

of the wavelength, and subsequently calculate the value of the

core radius for which maximum information transfer will occur.

Thus we have the possibility of characterizing with reasonable

precision [8] the ideal optical fiber for use with the available

source.

In Section II, we present the equations used, while in Section

III, we will describe the computational methods implemented. In

Section IV, we present some values of the core radii 6 for

information transmission at minimum dispersion and some curves

obtained for hypothetical fibers.

II. FORMULATION OF THE PROBLEM

The value of the wavelength for minimum total dispersion ~

depends on: a) the physicaf characteristics of the materials that

constitute the core and the cladding, b) the core radius, and c) the

propagation constant of the dominant HE1l mode and some of

its derivatives. This value is calculated for the core radius a, with

a predetermined value (for a known fiber) by solving the total

dispersion equation [7]

[
DT(a)=–+ (1–&+bvl+2b’@+&”e

@

1

(

2

. ~ lr27rj+ bo+ +b’e
)]

l,=~=o (1)
e

where c is the phase velocity in a vacuum, A is the wavelength in

free space

V,=n,n;+ (n;)’, j=l,2 (2a)

rj=nln; -n2n$ (2b)

d=n~–n~, n~=n~+bd. (2C)

The primes and double primes in (1) and (2) represent differenti-

ations with respect to the wavelength A. In (2a) -(2c), n ~ and n z

represent the refractive indices of the core and cladding, respec-

tively. In this paper, we will assume that the wavelength depen-

0018-9480/83 /1100-0959$01 .00 @1983 IEEE


