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for lossy dielectric substrates, the theory developed in this paper
has better accuracy and is clearly preferred.

In the results obtained for the microstrip and the coupled
microstrip, the lowest order of accuracy, “zero order”, was con-
sidered for the solutions. Nevertheless, it is not too difficult to
achieve a higher degree of accuracy by increasing the order of the
final matrix. This can be accomplished by simply expanding the
currents or the fields in terms of appropriate basis functions like
those, for instance, in [1].

The computer programs developed to generate the quoted
results are in FORTRAN and are available by request.
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Mathematical Representation of Microwave Oscillator
Characteristics by Use of the Rieke Diagram
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1EEE, AND JUN-ICHI IKENOUE

Abstract —This paper shows that the characteristics of oscillators can be
phenomenologically expressed by a polynomial function of frequency and
amplitude, provided the output signal is nearly sinusoidal, especially at
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microwave frequency. A method is presented of determining the coeffi-
cients of the polynomial from several points on the Rieke diagram, with
two examples being shown. The characteristics of oscillators can conse-
quently be represented by several parameters, as in the case of electron
tubes and transistors, so that the design of an oscillator circuit may become
easier with the aid of an electronic computer.

I. INTRODUCTION

So far, extensive studies have been performed on oscillator
characterization. An important contribution was made by van der
Pol. Since then, almost all studies on oscillators have been based
on his oscillator model. It appears, however, that few have
investigated the oscillator model itself.

The purpose of this paper is to provide a new mathematical
oscillator model. It will be shown that the nonlinear admittance
of oscillators can be phenomenologically expressed by a poly-
nomial function of frequency and amplitude, provided the output
signal is nearly sinusoidal, especially at microwave frequency. A
method is presented concerning how to determine the coefficients
of the polynomial from several points on the Rieke diagram, and
two examples will be shown. Although much time is consumed to
draw diagrams, the Rieke diagram has so far been used to express
the characteristics, especially of microwave oscillators [1], [2].
This is because the Rieke diagram has advantages since the
equi-power and equi-frequency loci are geometrically plotted on
the Smnith chart, and since the load admittance is represented
within a circle of finite extent.

In this paper, a mathematical expression of oscillator char-
acteristics is proposed instead of the geometrical expression, so
that the characteristics of oscillators may be represented by
several parameters, as in the case of electron tubes and transis-
tors. The design of oscillator circuits will then become easier with
the aid of an electronic computer.

II. MATHEMATICAL EXPRESSION OF NONLINEAR
ADMITTANCES

A. Van der Pol’s Oscillator

Van der Pol gave a basic mathematical expression of oscillator
characteristics allowing for nonlinearity. If his formulation is
viewed from the standpoint of the fundamental oscillation
frequency, the oscillator admittance can be represented by a
function of frequency and voltage amplitude squared as [3]

Y(J@.VI?) == Go+ G [V|* + jB,Aw (1)

where Aw = w — wy, and w, is the center frequency.! As is ex-
plained in the next section, the Rieke diagram of (1) is repre-
sented in the form of Fig. 2(b), while that of an existing oscillator
is of Fig. 9. These two Rieke diagrams are different from each
other chiefly in the following ways: i) Load locus on which
maximum output power is generated is a circle in the case of van
der Pol’s oscillator, while an existing oscillator produces the
maximum power at a single point on the Ricke diagram. ii) The
Rieke diagram of van der Pol’s oscillator is symmetric, while that
of an existing oscillator is usually asymmetric.

B. Generalization of Oscillator Admittance

Fig. 1 shows an equivalent circuit of coupling of a microwave
oscillator to a load. The effect of coupling strength of the

1The oscillation frequency when a matched load is connected to the line.

0018-9480,83 /1100-0954$01.00 ©1983 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 11, NOVEMBER 1983

YGwivd) 1:n P_LINE 2

o»or <

'3

Yo, )

P

VM)

Fig. 1. Equivalent circuit of coupling of a microwave oscillator to a load.

oscillator to the transmission line is represented by an ideal
transformer (1: »n), so that we have

Y(jo, V1) =Y"(jeo, VI?)/n*.
This oscillator admittance is transformed by a line length
Y(jw, V1) =2 [Y(ju,IV1%)]. (3)
The transformation .# means the counter-clockwise rotation of
equi-power and equi-frequency loci on the Rieke diagram. Here

we assume that the resultant admittance Y(jw,|V|?) is given by a
polynomial function of frequency and voltage as given by

@

Y(jw,|V|*) =~ Gy + jBy+ (G, + jB,)Aw
+(GV+jBV)|VIZ+(Gc+jBC)A‘*’|V|2
+(G,; + jB,; ) Aw?.

(4)

This is an extension of (1). Before we demonstrate that this model
represents the characteristics of practical oscillators fairly well,
we will investigate briefly the meaning of the coefficients of the
variables Aw and |V|%

In general, the first-order terms in || may be included in the
above equation. But, if they are included in addition to the
second-order terms in |V|, the algebra is much more complicated;
the load admittance that produces the maximum power cannot be
expressed in closed form, as will be clear in the following. For
IMPATT diodes, however, the replacement of || for |V|> may
give better results. In this case, the mathematics are not altered in
substance.

Now, let the load admittance be Y, = G; + jB;. By applying
Kirchhoff’s second law, we have ‘

Y(jw,|V|*)+Y,=0.
The output power is given by
P=G,|V)?

)

(6)
so that we have
Y(jw,P/G)+Y,=0. (7
Normalizing (7) to the characteristic admittance ¥, of the line
gives the following equation:
Y(jo,P/GL)/ Yo+ Y /Yo=Y (jo,P/G)+¥, =0 (8)

where the symbol ~ denotes the normalization to ;. Plots of (8)
on a Smith admittance chart, with w or P kept constant, give the
equi-frequency or equi-power loci on the Riecke diagram.

C. Stability Criterion

In this section, we consider the stability of solutions for (5).
Assuming a small change §|V| from the stationary voltage ampli-
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Fig. 2. van der Pol’s oscillator. (a) Complex load plane. (b) Ricke diagram.

tude |V,| at frequency w,, we have a variational equation
1 dow_ [ Tin(sen 1%P)
oy d ., (jes, W)

We see that |V,] is stable only when the right-hand side of (9) is
negative [3], [4].

(9)

D. Meaning of Each Coefficient

We consider first the characteristics of van der Pol’s oscillator
as a basis. Maximum output power of van der Pol’s oscillator is
given by P, = G2/4G, (Appendix I). Let power P be normalized
to P,

P=P/P,=4G,P/G;. (10)

Fig. 2(a) shows the equi-frequency and equi-power loci of van der
Pol’s oscillator on the complex load plane, and Fig. 2(b) repre-
sents those on the Smith chart. From the real part of (8), together
with (10), the equi-power loci of van der Pol’s oscillator may be
written as (Appendix I)

G, =G,(1+V1i- P)/2Y,. (11)

From (11), it is found that the maximum output power P=1is
generated at every point on the admittance locus of G; = G, /2Y,,.
Equation (12) represents the equi-frequency locus

A

B, =-B,Aw/Y, (12)

with the central frequency line Aw =0, corresponding to the
susceptance B, =0 line. It should be noted that the stability
condition G, B, > 0 holds by applying (9).

1) Meaning of Coefficients G, and B,: First of all, let us
investigate the characteristics of an oscillator model containing
two parameters G, and B, in addition to van der Pol’s oscillator
model in (1). The equi-power and equi-frequency loci are respec-
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Rieke diagram (case of B, < 0,G,, > 0).

tively given by (see Fig. 3)

B,G,\ . , i
=Go+| Gy — 5 | PG3 /4G, G, Y,
+6,Y%,~G,B,Y,/B,=0 (13)
B, Yy+ B,Aw +(Gy— G,0w — G, Y,) B, /G, =0. (14)

The coefficient G, makes the equi-power loci asymmetric with

respect to frequency. The equi-frequency loci have a tendency to

turn to the left toward the periphery when B, is positive, and to

the right when B, is negative. The stability condition is obtained
from (9)

G,B,—B,G,>0. (15)

2) Meanmng of Coefficient G.: Fig. 4 shows the Rieke diagram

of an oscillator model containing a parameter G, in addition to
van der Pol’s model (1). The equi-power loci are given by

(6.Y,)’ = GG, Yo + PGE{ G, — GcYoB, /B, } /4G,y = 0.
(16)

The equi-frequency loci are given by (12). The stability condition
is given by

Gy, —G.YyB, /B, > 0. (17)

3) Meaning of Coefficient B.: Fig. 5 shows the Rieke diagram
containing B, in addition to van der Pol’'s model (1). The
equi-power loci are given by (11), and equi-frequency loci are
obtained from

YOBL+Aw{Bw+(GO—YOGL)BC/G,,} =0. (18)

The stability condition is expressed by

B.G, + Bo(Gy — Y,G, ) > 0. (19)
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4) Meaning of Coefficient G,,,: Fig. 6 shows the Ricke diagram
containing G,,, in addition to van der Pol’s oscillator. The maxi-
mum output power is generated at only one point. The practical

oscillators have positive G,,,. The equi-power loci are represented
by

PG3/4+(G,Y,) = 6, %o {Go— Gun (B, Yo /B,)'} = 0. (20)
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Fig. 6. Ricke diagram containing G,,. (a) Complex load plane. (b) Ricke
diagram (case of G, > 0).

The equi-frequency loci are given by (12). The stability condition
is G, B, > 0.

5) Meaning of coefficient B,,,: Fig. 7 shows the Ricke diagram
containing B, in addition to van der Pol’s model (1). The
equi-power loci are given by (12). The equi-frequency loci are
represented by

B,Yy=—(1+B,,Aw/B,)AwB,.
The stability condition is
B,+2B,Aw> 0.

(21)

(22)

III. METHOD TO DETERMINE THE CHARACTERISTIC PARAMETERS
OF AN OSCILLATOR BY USE OF THE RIEKE DIAGRAM

Let us consider how to determine the coefficients of Aw and
|V|? in (4) by use of the Rieke diagram. The line length shown in
Fig. 1 rotates the Ricke diagram. After we rotate it to get the
standardized Rieke diagram, we determine the coefficients of

4).2

A. The Use of the Least-Square Method

Generally speaking, five complex coefficients of (4) can be
determined by five measured values. If we want to get more
accurate solutions, we can make use of the least-square method.
The residual of (4) from the N measured values

?L1=éLz+jéLi (i=1~N)

is written as
R1=?(jw1’PI/GL1)+fILI

(i=1~N). (23)

From the definition of the least-square method, the coefficients

2The standard diagram, in the case of van der Pol’s oscillator, is such that
the center frequency line (Aw = 0) is equal to the load line of zero susceptance
and nonoscillation region exists in the heavy-load-admittance region.
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Fig. 8.

Distribution of weight,

are determined by minimizing S,

N N
Sg= §1{RC(R,)}2+ T {Im(R,)}*.

i=1

(24)

B. Weighted Averaging Method

The Smith chart is not uniform with respect to the density of
admittance. This leads to nonuniform accuracy of the result
according to the feature of the Smith chart. To rectify it, we
adopt a weighting function. Let us assume a weighting function’

W(|I'),0) =30.5—29.5|T|cos 8 (25)
the distribution of weight of which is shown in Fig. 8. The left
part of the Smith chart (small admittance region) has heavier
weight than the right part, so that the relative accuracy is aver-
aged on the Smith chart. With the weighting function (25) em-
ployed, (24) is modified as

N

Spw = Z

1=1

(Re(R)Y' W+ L (Im(R)Y'W,.  (26)

3Since there 1s no definite rule to find the weighting function, (25) has been
assumed in an intuitive and empirical manner,
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Fig. 9. Example of a Gunn oscillator NDO79AK. (a) Measured Rieke dia-
gram. (b) Reproduced Rieke diagram.

By solving the partial differential equation, we can obtain the
coefficients of (4) (see Appendix II).

IV. ExXAMPLES

By use of the method described above, let us determine the
admittances of practical oscillators. As an example, Fig. 9(a)
shows the Rieke diagram of a Gunn oscillator NDO79AK. The
values of the parameters shown in Table I were determined from
16 measured points on the Rieke diagram. Fig. 9(b) shows the
calculated Ricke diagram using the values of this table. Compar-
ing Fig. 9(a) with (b), we see a good agreement between them,
and by far a better agreement than with van der Pol’s model.

Fig. 10 shows another example of a Gunn oscillator 10GMO081.
The relation among (a), (b), and Table II is the same as that of
Fig. 9. Figs. 10(a) and (b) show a good overall agreement in
between.

V. CONCLUSION

We attempted to represent the admittance of oscillators in
terms of mathematical formulas, whose parameters are de-
termined from the Ricke diagram. As a result, we found that (4)
is sufficient to represent the characteristics of ordinary micro-
wave oscillators. With this formula applied to computer analysis,
the design of oscillator circuits and the drawing of the Ricke
diagram will be made easier.
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APPENDIX I
EQUI-POWER LOCI OF VAN DER PoL’S OSCILLATOR

Equation (1) represents the characteristics of van der Pol’s
oscillator. Connecting a load Y, to the oscillator leads to (5). The

NEC 10GM081 X301
Fo=8.848 GHz

(a)

(®)

Fig. 10. Example of a Gunn oscillator 10GMO081. (a) Measured Rieke dia-
gram. (b) Reproduced Rieke diagram.

TABLE I
COEFFICIENTS FOR FiG. 9(a)+(b)

50=0,502x102 Bo=-0,091x1G°
Gu=-0,861x10" Bu=0357x10°
6v=0.387x10% Bu=0.118x16°
6c=0,955x10° Be=-0890x16°
Guz=0.882x10° Buz=0.764x10°
8WER(TJW

EQ. 4 HZ)

P
F (MHZ
LINE ADM. 0,002(35)

TABLEII
COEFFICIENTS FOR F1G. 10(a)+(b)

Go=0.00471

-4
Gw=-0.549x10
7

Bo=-0.00240

Buw=0147x10°
6v=0.735x1G " Bv=0.572x1G
6c=0.169x16° Bc=0.187x10°

-6 -
Gw2=0.542x10 Bw2=0.196x10 5

LINE ADM.

FREQ. MHz
POWER mw

0.002;53

real part of (5) is

-Gy + G VI + G, =0. (A1)
Substuting (10) into (Al), we have
G} —GyG, + GZP/4=0. (A2)

The equi-power loci are plotted using (A2). The maximum output
power P=4G P, /G; =1 is generated when G, = G, /2.
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ApPENDIX II
METHOD TO DETERMINE THE COEFFICIENTS BY USE OF THE
LEAST-SQUARE METHOD
The minimization of (26) is attained by minimizing both the
real and imaginary parts of (26). Setting

g=Im{Szy } f=Re{Spp }
we have the minimization conditions
Of _o0f _o Of _o of _o df _
36, %36, " %56, " %96, " %36, "0 &)
98 498 _, 98 _ 98 _, 98 _
a8, %35,~ %38, %35, " "38, 0 49

We find the coefficients of (4) by solving the simultaneous
equations (A3) and (A4).
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Single-Mode Fiber Design for Minimum Dispersion

PAULO SERGIO MOTTA PIRES AND
DAVID ANTHONY ROGERS, MEMBER, IEEE

Abstract —The value of the radius of the core of a single-mode step-
index optical fiber for minimum dispersion is calculated with the normal-
ized frequency in the range 1.0 < V < 2.5, using the approximation for the
eigenvalue U proposed by Miyagi and Nishida [1]. This calculation is made
by solving the total dispersion equation for the core radius when the
wavelength assigned is assumed to be that necessary for minimum total
dispersion. The computational procedure presented is simple enough to be
accomplished on a programmable calculator or microcomputer. This work
makes possible the characterization, with reasonable precision, of the ideal
fiber that should be used with the available optical source.

I. INTRODUCTION

The bandwidth for single-mode optical fibers is maximum
when operation of the system takes place at the wavelength for
minimum total dispersion A. Theoretical research concerning
dispersion in monomodal step-index optical fibers has been based
on the assumed prior knowledge of the core radius and of the
materials that constitute the core and the cladding, so that the
wavelength A can be found. Since the wavelength is established
by the characteristics of the known fiber, the next step is to
search for the corresponding optical source.
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In previous publications [2], [3], the exact characteristic equa-
tions and numerical methods for differentiation and interpolation
for calculating the value of A for monomodal step-index optical
fibers have been used. The results thus obtained were compared
with those that were arrived at utilizing asymptotic formulas
[4]-[71. In spite of the excellent results obtained, even in the
asymptotic limit, and having made possible the extension of the
analysis that had been developed to other cases, the large quan-
tity of calculations required the availability of medium to large
computer systems. When such systems are not available, some
approximate methods, with acceptable precision in these circum-
stances, allow the implementation of programs to calculate the
value of A using programmable calculators or microcomputer
systems.

Utilizing the total dispersion formula established by South [7],
derived with the objective of calculating A, together with the
approximate formulation for the eigenfunction U proposed by
Miyagi and Nishida [1], we prepared some programs for the
TI-59 programmable calculator that make possible the design of
monomodal step-index optical fibers. With the utilization of
these programs, we obtain the value of the radius of the core,
within the normalized frequency range 1.0 <V 2.5, for any
value of the wavelength assumed to be that for minimum disper-
sion. In other words, we start with knowledge of the materials
that will constitute the core and the cladding and with the value
of the wavelength, and subsequently calculate the value of the
core radius for which maximum information transfer will occur.
Thus we have the possibility of characterizing with reasonable
precision [8] the ideal optical fiber for use with the available
source.

In Section II, we present the equations used, while in Section
111, we will describe the computational methods implemented. In
Section IV, we present some values of the core radii 4@ for
information transmission at minimum dispersion and some curves
obtained for hypothetical fibers.

II. FORMULATION OF THE PROBLEM

The value of the wavelength for minimum total dispersion X
depends on: a) the physical characteristics of the materials that
constitute the core and the cladding, b) the core radius, and c¢) the
propagation constant of the dominant HE,; mode and some of
its derivatives. This value is calculated for the core radius a, with
a predetermined value (for a known fiber) by solving the total
dispersion equation [7]

A
on,

Dr(a)=— {(1— b)v, + by, +2b% + %b”ﬂ

1 1.\
——2(n2}’lf7_+b¢+*2‘b’0) Irex=0 (1)

€

where c is the phase velocity in a vacuum, A is the wavelength in
free space

2

vj=njn;’+(nj) ., J=L2 (22)
& =nni—nynh (2b)
0=n?-n3, ni=n3+bo. (2¢)

The primes and double primes in (1) and (2) represent differenti-
ations with respect to the wavelength A. In (2a)-(2¢), n, and n,
represent the refractive indices of the core and cladding, respec-
tively. In this paper, we will assume that the wavelength depen-

0018-9480,/83 /1100-0959$01.00 ©1983 IEEE



